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SUMMARY

We develop a goal-oriented error estimator for finite-element discretizations of fluid–structure-interaction
problems. As a model problem, we consider the steady Stokes flow in a 2D channel where part of the
channel wall is flexible. We introduce the reference domain approach where the Stokes problem on the
variable domain is transformed into a fixed reference domain. This allows the formulation of a proper
dual problem. The dual solution is then used in the evaluation of the error estimate, as usual. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulations of fluid–structure interaction typically require vast computational resources.
Finite-element techniques employing goal-oriented adaptive strategies could offer a substantial
improvement in the efficiency of such simulations. These strategies rely on a posteriori error
estimates for specific output quantities of interest, the goal functionals. For this, an appropriate
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dual problem is required, see, for instance, [1, 2]. However, the free-boundary character of fluid–
structure-interaction problems forms a fundamental complication, as it yields the underlying fluid
domain unknown a priori. Consequently, the formulation of an appropriate dual problem is
nontrivial.

In this work we develop a goal-oriented error estimator for finite-element discretizations of
fluid–structure-interaction problems. As a model problem, we consider the steady Stokes flow in a
2D channel where part of the channel wall is flexible. To formulate an appropriate dual problem,
we introduce the reference domain method. For this, we transfer the Stokes problem from the
unknown domain to the fixed approximate domain using a transformation map. The dual solution
is then used in the evaluation of the error estimate, as usual.

We note that this approach is different from [3], where it is proposed to embed the problem in a
large enough hold-all domain prior to linearization. Furthermore, our framework does not involve
a total Eulerian framework as considered in [4]. A goal-oriented error estimation for Stokes flow
without interaction has been considered in, for instance, [5, 6].

2. PROBLEM STATEMENT

2.1. Fluid–structure-interaction model

We consider the fluid–structure system depicted in Figure 1. It corresponds to the half-length
channel considered in [7]. For each (vertical) structure displacement � :�0→R, we associate the
open bounded fluid domain ��. It has a boundary ��� consisting of in- and outflow boundaries
�in/out, wall boundaries �wall and the flexible segment ��, which we refer to as the fluid–structure
interface.

On the domain ��, we consider the Stokes flow problem for the velocity u :�� →R2 and
pressure p :�� →R:

−�u+∇ p=0

−∇ ·u=0

}
in �� (1a)

u=0 on ��∪�wall (1b)

u=uin/out on �in/out (1c)

Figure 1. The fluid–structure system: its geometry definition; the fluid domain �� and current fluid–structure
interface �� for vertical structure displacement �; the reference interface �0 (dashed line); in- and outflow

boundaries �in and �out. The thick lines correspond to the wall boundaries �wall.
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The structure consists of a string constrained to move only vertically. Its displacement �, driven
by the vertical component of the Stokes flow interface traction, satisfies

−T �′′(x)/
√
1+�′(x)2=(pn−∇u ·n) ·(0,1) on �� (1d)

�=0 on ��� (1e)

where T is the string tension, which is assumed to be constant. Note that the displacement � maps
a point on the reference interface, �0, to a point on the current interface, ��.

For the purpose of finite-element discretizations, we also consider the standard weak formulation
of the Stokes problem:

Find (u, p) ∈ H1
uD(��)×L2

0(��) :
a(�;u,v)+b(�;v, p)=0 ∀v∈H1

0 (��) (2a)

b(�;u,q)=0 ∀q∈L2
0(��) (2b)

where

a(�;u,v) :=
∫

��

∇u :(∇v)T

b(�;v, p) :=−
∫

��

p∇ ·v

Note that H1
uD

(��) consists of functions satisfying the Dirichlet boundary conditions (1b) and
(1c).

Assuming that the interface fluid traction is smooth enough, we have the following variational
form for the structure:

Find � ∈ H1
0 (�0) :

k(�,�)=g(�;u, p,�) ∀�∈H1
0 (�0) (2c)

where

k(�,�) :=T
∫

�0

�′�′

g(�;u, p,�) :=
∫

��

(pn−∇u ·n) ·(0,1)�(x)

2.2. Goal functionals

Our interest will be specific (bounded and differentiable) goal functionals q :(�,u, p)∈
H1
0 (�0)×H1

uD
(��)×L2

0(��)→R of the solution, for example, the average displacement
∫
�0

�.
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Let (�h,uh, ph)∈H1
0 (�0)×H1

�D
(��h )×L2

0(��h ) be a Galerkin approximation of (2). Our objective

is to provide an estimate for the goal error Eq :=q(�,u, p)−q(�h,uh, ph).

3. GOAL-ORIENTED ERROR ESTIMATION

3.1. Dual of the coupled problem

In generic boundary value problems, the dual problem involves the adjoint of the original primal
problem. Since our problem is a free-boundary problem, it is nontrivial to obtain the appropriate
dual. Therefore, we propose to first reformulate our problem to a fixed reference domain and
subsequently perform a linearization to arrive at our dual problem.

Consider the dual variables z (dual to the velocity u), s (dual to the pressure p) and � (dual to
the displacement �) with �=0 at ��0. Multiplying the primal equations (1) with the dual variables
and integrating over their corresponding domain, we obtain∫

��

(∇u :(∇z)T− p∇ ·z)+
∫

���

(pn−∇u ·n) ·z=0 (3a)

−
∫

��

s∇ ·u=0 (3b)

∫
�0

T �′�′−
∫

��

(pn−∇u ·n) ·(0,1)�=0 (3c)

where we have performed an integration by parts in the first equation and last equation. Adding
(3a)–(3c) together, the traction terms, pn−∇u ·n, on the interface �� will vanish by choosing the
following boundary condition for z:

z=
{

(0,1)� on ��

(0,0) on ���\��
(4)

Before linearizing the functionals with respect to the displacement � around �h , we introduce the
transformation map T�h ,� :��h →�� defined by

T�h ,�(x, y)=

⎧⎪⎨
⎪⎩

(
x,

�+�(x)

�+�h(x)
y

)
, x ∈[0,5�]

(x, y), x /∈[0,5�]
(5)

Applying this transformation yields the important identity

â(�; û, ẑ)+ b̂(�; ẑ, p̂)+ b̂(�; û, ŝ)+k(�,�)=0 (6)

where we have introduced the transferred primal and dual Stokes flow unknowns

û=u◦T�h ,�, p̂= p◦T�h ,�

ẑ= z◦T�h ,�, ŝ=s◦T�h ,�
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and the following transferred forms:

â(�; û, ẑ) :=a(�; û◦T−1
�h ,�

, ẑ◦T−1
�h ,�

)=
∫

��h

(A�h ,� ·∇̂û) :(∇̂ ẑ)T

b̂(�; û, ŝ) :=b(�; û◦T−1
�h ,�

, ŝ◦T−1
�h ,�

)=−
∫

��h

ŝ(B�h ,� ·∇̂) · û

with ∇̂ denoting differentiation in the reference domain ��h . The terms appearing due to the
transformation are

A�h ,� := J�h ,�DT−1
�h ,�

·DT−T
�h ,�

B�h ,� := J�h ,�DT−T
�h ,�

J�h ,� :=detDT�h ,�

where DT�h ,� :��h →R2×2 is the Jacobian matrix of the transformation T�h ,� introduced in (5).
Applying this transformation to the goal functional gives the transferred form

q̂(�, û, p̂)=q(�, û◦T−1
�h ,�

, p̂◦T−1
�h ,�

)

Note that we have transformed our problem and functional into the fixed reference domain ��h ;
we can easily derive our dual by linearization:

Find (�, z,s) ∈ H1
0 (�0)×H1

zD(��h )×L2
0(��h ) :

â(�h;�u, z)+ b̂(�h;�u,s)=�uq̂(�h,uh, ph)(�u) ∀�u∈H1
0 (��h ) (7a)

b̂(�h; z,�p)=�pq̂(�h,uh, ph)(�p) ∀�p∈L2
0(��h ) (7b)

��â(�h;uh, z)(��)+��b̂(�
h;uh,s)(��)

+��b̂(�
h; z, ph)(��)+k(��,�)=��q̂(�h,uh, ph)(��) ∀��∈H1

0 (�0) (7c)

where H1
zD

(��h ) consists of functions in H1(��h ) satisfying boundary condition (4). Note that we
need only the transformed functionals to perform the linearization with respect to the displacement
�, yielding contributions

��â(�h;uh, z)(��)=
∫

��h

(〈��A�h ,�,��〉·∇̂uh) :(∇̂z)T

��b̂(�
h; z, ph)(��)=−

∫
��h

ph(〈��B�h ,�,��〉·∇̂) ·z
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3.2. A posteriori error estimate

Theorem 1
Given any approximation (�h,uh, ph)∈H1

0 (�0)×H1
uD

(��h )×L2
0(��h ) to the primal problem (1),

let (�, z,s)∈H1
0 (�0)×H1

zD
(��h )×L2

0(��h ) be the solution to the dual problem (7). Then, we have
the error representation

Eq = q(�,u, p)−q(�h,uh, ph)

= −(a(�h,uh, z)+b(�h, z, ph)+b(�h,uh,s)+k(�h,�))+O(‖e‖2)

where ‖e‖=‖e�‖H1
0 (�0)

+‖eu‖H1
0 (��h )+‖ep‖L2

0(��h ) and the errors are defined as

e� :=�−�h, eu :=u◦T�h ,�−uh, ep := p◦T�h ,�− ph

Note that the residual Rq :=−(a(�h,uh, z)+b(�h, z, ph)+b(�h,uh,s)+k(�h,�)) serves as the
error estimate and can be approximated by computing a discrete dual solution.

Proof of Theorem 1
First note that

Eq = q̂(�,u◦T�h ,�, p◦T�h ,�)− q̂(�h,uh, ph)= q̂ ′(�h,uh, ph)(e�,eu,ep)+O(‖e‖2)
Then using the dual problem (7), we have

Eq = â(�h;eu, z)+ b̂(�h;eu,s)+ b̂(�h; z,ep)+k(e�,�)

+��â(�h;uh, z)(e�)+��b̂(�
h;uh,s)(e�)+��b̂(�

h; z, ph)(e�)+O(‖e‖2)

and since the dual was a linearization of the left-hand side of (6), we obtain

Eq = (â(�;u◦T�h ,�, z)+ b̂(�;u◦T�h ,�,s)+ b̂(�; z, p◦T�h ,�)+k(�,�))

−(â(�h;uh, z)+ b̂(�h;uh,s)+ b̂(�h; z, ph)+k(�h,�))+O(‖e‖2)

Finally, we obtain the proof by noting that the first term in brackets vanishes due to identity (6).
�

4. NUMERICAL EXPERIMENT

We consider our primal problem with parameters �=1 and T =50, and uin/out corresponds to a
parabolic in- and outflow with a maximum of 3

2 . We discretize the Stokes flow using the standard
(P2−P1) Taylor–Hood finite element on triangles. The structure equation is solved using linear
finite elements, for which its elements exactly correspond to the adjacent fluid–element edges. The
coupled problem is solved using subiteration, where at each iteration the fluid mesh is deformed
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Figure 2. The primal (left) and dual (right) solution on a 28-element mesh. The arrows represent the
velocity vectors uh and z. Note that � is also readable from the figure since z=(0,1)� at the interface ��h .

to accommodate the new displacement. The dual problem is discretized using the same mesh as
the primal problem, but the dual shape functions are of one order higher (to prevent Galerkin
orthogonality that would yield a zero error estimate). The goal functional is the average structure
displacement

∫
�0

�.
Figure 2 shows a sample primal and dual solution obtained on a mesh of 28 elements. In the

table below, we report the convergence of the estimator on uniform meshes demonstrating the
consistency of our goal-oriented error estimator.

Elements Dofs q=∫
�0

�h Error Eq Estimate Rq Effectivity Rq/Eq

28 176 0.32261 0.06044 0.0815414 1.35
112 599 0.37018 0.01287 0.0188627 1.47
448 2201 0.38006 0.00300 0.0045154 1.51

1792 8429 0.38230 0.00075 0.0010786 1.44
Reference 7168 32981 0.38305 0
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